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ABSTRACT: The combined use of a halogen bond (XB)
donor with trimethylsilyl halide was found to be an efficient
cocatalytic system for the direct dehydroxylative coupling
reaction of alcohol with various nucleophiles, such as
allyltrimethylsilane and trimethylcyanide, to give the corre-
sponding adduct in moderate to excellent yields. Detailed
control experiments and mechanistic studies revealed that the XB interaction was crucial for the reaction. The application of this
coupling reaction is also described.

Lewis acid catalysts are indispensable and used in various
fields in organic synthesis.1 However, many of these

catalysts contain metals that are expensive or sometimes
difficult to handle. In the past few decades, air- and moisture-
stable Lewis acids have been developed,2 and investigation of
novel Lewis acid catalysis is still a major research area in organic
chemistry. Electron-deficient organoiodine(I) compounds are
known to form a noncovalent interaction with Lewis bases,
called halogen bonding (XB),3 and have been used in the field
of crystal engineering.4 Although such organoiodine com-
pounds (XB donors) have recently begun to be used in organic
synthesis as organo-Lewis acids,5−8 the catalytic use of XB
donors is still a developing and challenging research area
(Scheme 1).9 Moreover, variation of the activation mode of
substrates is limited: (1) activation of sp2 hybridized nitrogen
atoms (Scheme 1, eqs 1 and 2);5 (2) activation of carbonyl

oxygen (Scheme 1, eq 3);6 or (3) activation of C−Cl bonds
(Scheme 1, eq 4).8 A novel strategy is required to activate the
different types of substrates to expand the utilities of the XB
donor as catalysts. We envisioned that the activation of the Si−
X bond by the XB donor would increase the Lewis acidity of
the silicon atom, which in turn activates the OH group of an
alcohol,10 enabling the direct coupling reaction with TMSNu
(Scheme 1, eq 5). From the viewpoint of synthetic organic
chemistry, the use of alcohols for coupling reactions is more
straightforward and divergent, because various alcohols are
more readily accessible than the corresponding halides. For the
success of such a coupling reaction, however, the design of the
XB donor is important,8 because a strong XB donor could form
an inert complex with the eliminated halide anion, thereby
preventing the catalytic use of the XB donor.7 Herein, we
report a novel XB-donor catalyzed direct coupling reaction of
alcohols, and the salient features of this method are as follows:
(1) the reaction is operationally simple; (2) various
nucleophiles can be introduced by the same catalytic system;
and (3) the newly developed XB donor is air- and moisture-
stable.
To identify suitable XB donor catalysts, we first focused on

the direct coupling reaction of alcohol with allylsilane (Table
1), because this reaction is difficult due to the poor leaving
ability of the hydroxyl group and side reactions such as
dimerization. In fact, only limited examples have succeeded in
the catalytic direct allylation of alcohols.11,12

We first screened various XB donors (15 mol %), combined
with TMSBr (15 mol %) as the cocatalyst for direct allylation of
benzhydrol 1a (Table 1, entries 1−8). Although a neutral XB
donor pentafluoroiodobenzene 313 was found to be ineffective
(Table 1, entry 1), iodoimidazolium triflate 4 promoted the
reaction slightly to give the desired product (Table 1, entry 2).
The iodine atom of the imizazolium salt appeared to be
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Scheme 1. Utilization of XB Donors As Catalysts for Organic
Synthesis
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necessary for the reaction (Table 1, entry 2 vs 3).
Unexpectedly, a bidentate iodoimidazolium salt 6 did not
dramatically improve the chemical yield (Table 1, entry 4).
Then, we investigated the effect of several counteranions of
monodentate iodoimidazolium salts 7−10 (Table 1, entries 5−
8). It is worth noting that the XB donor catalyst 10, bearing
hexafluoroantimonate (SbF6

−) as a counteranion, accelerated
the reaction significantly to furnish the coupling adduct 2a in
64% yield (Table 1, entry 8). Fortunately, it was also found that
10 can be readily prepared as an air- and moisture-stable white
solid.14 The replacement of TMSBr to TMSI improved the
reactivity and the chemical yield to 75% (Table 1, entry 10).15

Practically, TMSI could be successfully replaced with I2, which
is known to form TMSI when reacted with allylsilane,16

exhibiting a similar reactivity as TMSI alone (Table 1, entry
11). We then investigated the solvent effect for this reaction
(Table 1, entries 12−14) and found that MeNO2 gave the best
results over any other solvent (Table 1, entry 14). Further
optimization revealed that 2 equiv of allylsilane were sufficient
to afford 2a without a significant decrease in the chemical yield
(Table 1, entry 15). Control experiments confirmed that strong
acids, which might be generated in situ, did not promote the
formation of 2a in even trace amounts (Table 1, entries 16 and
17).14,17

With the optimized reaction conditions in hand, we
subsequently examined the reaction scope (Figure 1) and

found that various substituents on the aromatic ring were
tolerated (products 2b−2l). Allylation of alcohols bearing
electron-rich aryl groups gave the corresponding adducts 2b−e
in good to excellent yields. However, when the substrates with
electron-withdrawing groups, such as −F and −Cl, were used,
the chemical yields of 2f,g were slightly lower,18 implying that
the coupling reaction proceeds through a carbocation
intermediate (vide inf ra). An unprotected phenolic OH group
and secondary amide, as well as a carbamate protecting group
(N-Boc), were tolerated under the optimized reaction
conditions to give the allylated products 2h−j in 44−97%
yields. In addition to the above-mentioned diaylmethanol
derivatives, different types of substrates, such as a tertiary
alcohol and a hemiaminal, could also be applied to the coupling
reaction, furnishing the desired products 2k−m in excellent
yields. Notably, several different nucleophiles were introduced
to this established coupling reaction, and the coupling adducts
2n−p with alkynyl, cyano, and 2-keto groups were obtained,
albeit in lower yields.
A plausible reaction mechanism17 is shown in Figure 2. First,

allylsilane (TMSNu) and molecular iodine react to form
TMSI,16 which is then activated by the XB donor, enhancing
the Lewis acidity of the silicon atom. Then, the oxophilic Lewis
acid activates the OH group of substrate 1 through an
intermediate A, generating the carbocation intermediates B.
The subsequent addition of TMSNu furnishes the coupling

Table 1. Optimization of the Reaction Conditions for the
Direct Dehydroxylative Coupling Reaction of Alcohol

entry x cat. X− source solvent yielda (%)

1 10 3 TMSBr CH2Cl2 0
2 10 4 TMSBr CH2Cl2 6
3 10 5 TMSBr CH2Cl2 0
4 10 6 TMSBr CH2Cl2 9
5 10 7 TMSBr CH2Cl2 0
6 10 8 TMSBr CH2Cl2 0
7 10 9 TMSBr CH2Cl2 13
8 10 10 TMSBr CH2Cl2 64
9 10 none TMSBr CH2Cl2 0
10 10 10 TMSI CH2Cl2 75
11 10 10 I2 CH2Cl2 68
12 10 10 I2 MeCN 36
13 10 10 I2 Toluene 22
14 10 10 I2 MeNO2 78
15 2 10 I2 MeNO2 78
16 2 HI none MeNO2 0
17b 2 TfOH none MeNO2 0

aDetermined by 1H NMR based on dimethylsulfone as an internal
standard. bTf = trifluoromethanesulfonyl.

Figure 1. Substrate scope of the coupling reaction of alcohol (isolated
yields are indicated).
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product 2 and regenerates TMSI as well as the XB donor
catalyst. However, an alternative mechanism through the
intermediate A′ cannot be ruled out at this stage, where a
silylcation (or Me3SiSbF6) is generated via complete anion
exchange between the XB donor and TMSI, and functions as
the active species for the activation of the alcohol.
To gain insight into the active species, 13C NMR studies

were performed (Scheme 2, eq 6). Upon mixing an equimolar

amount of TMSI with the donor 10, the chemical shift of the
signal representing C2 (94.6 ppm) did not shift downfield in
the 13C NMR spectrum.14 This result strongly indicated that
anion exchange between TMSI and the XB donor did not
occur, because the chemical shift of the iodoimidazolium C2
position bearing a halide counteranion, such as 7, is observed
much further downfield (114.9 ppm).4a Therefore, the active
species for the promotion of the reaction is TMSI activated by
the XB donor (Figure 2). We also performed a mechanistic
study using a chiral substrate (Scheme 2, eq 7). When the chiral
alcohol 1b14 was reacted under the optimized reaction
conditions, the racemic product 2b was obtained in 78%
yield, strongly suggesting that the reaction proceeds via an SN1
pathway, which also supports the proposed mechanism shown
in Figure 2.
Finally, this catalytic direct coupling reaction of alcohol with

allylsilane was applied to the synthesis of pimozide, which is
known to be an antipsychotic drug19 (Scheme 3). The coupling
adduct 2f was treated with Schwartz’s reagent,20 followed by
molecular iodine to give the corresponding primary iodide in

82% yield,14 which was then coupled with the secondary amine
11 to give pimozide in 62% yield.
In conclusion, we have developed an XB donor−TMSX

cocatalytic system to activate alcohol, enabling a direct
dehydroxylative coupling reaction with various nucleophiles
bearing TMS groups. We believe that the combination of an XB
donor with different catalysts will broaden the utilities and
application of XB donors as organo-Lewis acids, which is now
underway in our laboratory and will be reported in due course.
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